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ABSTRACT: This study describes recent advancements in the Multi-Radar Multi-Sensor (MRMS) automated gauge

ingest and quality control (QC) processes. A data latency analysis for the combined multiple gauge collection platforms

provided guidance for a multiple-pass generation and delivery of gauge-based precipitation products. Various advance-

ments to the gauge QC logic were evaluated over a 21-month period, resulting in an average of 86% of hourly gauge

observations per hour being classified as useful. The fully automated QC logic was compared to manual human QC for a

limited domain, which showed a .95% agreement in their QC reasoning categories. This study also includes an extensive

evaluation of various characteristics related to the gauge observations ingested into the MRMS system. Duplicate obser-

vations between gauge collection platforms highlighted differences in site coordinates; moreover, errors in Automated

Surface Observing System (ASOS) station site coordinates resulted in .79% of sites being located in a different MRMS

1-km grid cell. The ASOS coordinate analysis combined with examinations of other limitations regarding gauge observa-

tions highlight the need for robust and accurate metadata to further enhance the quality control of gauge data.

SIGNIFICANCE STATEMENT: This study examines an advanced quality control technique for the MRMS system

and how it performs against manual quality control by forecasters, which showed .95% match for the reasoning of

flagging a gauge; moreover, this study examines other characteristics pertaining to the ingest and quality control of

automated gauge observations, including duplicate observations, errors in location, and the need for more robust

metadata to improve hydrometeorological product verification and corrections.
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1. Introduction

Rain gauge observations provide critical information for

various hydrometeorological needs, ranging from flood oper-

ations to water resource management. Precipitation accumu-

lations recorded from rain gauges are considered as ‘‘ground

truth’’ and are utilized for validation and correction of re-

motely sensed quantitative precipitation estimations (QPEs).

Previous studies highlighted the positive impacts of combining

rain gauge observations with radar-derived QPE to improve

precipitation estimation accuracy (e.g., Seo and Breidenbach

2002; Smith and Krajewski 1991). The Multi-Radar Multi-

Sensor (MRMS) system has relied upon hourly gauge ob-

servations to generate high spatiotemporal resolution

gridded locally gauge-corrected radar QPE that has demon-

strated improved statistical results over its radar-only counter-

part (Zhang et al. 2016).

The utilization of gauge observations for QPE generation or

validation requires the use of quality control (QC) algorithms

to prevent erroneous observations from negatively influencing

the validation or correction of griddedQPEs (e.g., Steiner et al.

1999). Previous research analyzed the QC of gauges through

spatiotemporal checks (e.g., Tollerud et al. 2005; Kondragunta

and Shrestha 2006; Kim et al. 2009). Other studies have out-

lined methodologies for identifying and removing erroneous

gauge observations using gridded QPEs (e.g., Marzen and

Fuelberg 2005; Chen and Xie 2008; Lewis et al. 2018). The

MRMS system has employed its own gauge QC algorithm to

identify potentially erroneous observations (Qi et al. 2016).

Factors such as radar-derived QPE values, radar data ade-

quacy, and surface wet-bulb temperatures to delineate be-

tween environments conducive of rainfall versus solid winter

precipitation were utilized to help determine if hourly gauges

observations were outlier or false values.

Gauge observations that fail to pass QC algorithms can be a

result of physically based limitations inhibiting the retrieval of

an accurate observation. Strong surface winds can result in

precipitation undercatch due to turbulence (e.g., Wilson and

Brandes 1979; Sevruk 1989; Sevruk et al. 1991; Yang et al. 1998;

Habib et al. 1999). Previous research has noted challenges with

the tipping process, notably in significant rain rates, that re-

sulted in loss of liquid or double tipping (e.g., Parsons 1941).

Blockage of the gauge orifice can result in the underestima-

tion of or inability to record precipitation accumulations (e.g.,

Sevruk 2005; Sieck et al. 2007). Poor siting, malfunctions,
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calibration errors, and other mechanical problems can also

result in erroneous observations (e.g., Groisman and Legates

1994; Steiner et al. 1999; Kondragunta and Shrestha 2006; Sieck

et al. 2007). Additional challenges have been documented

when rain gauges were tasked to measure the liquid-equivalent

of frozen precipitation. Previous studies by Goodison et al.

(1998), Rasmussen et al. (2012), and Martinaitis et al. (2015)

presented detailed discussions and examples of winter pre-

cipitation impacts on rain gauge observations.

Considerations beyond physical limitations must also be

taken into account when utilizing gauge observations for QPE

verification and correction, especially within a real-time sys-

tem. The timing and data latency of gauge observations should

be investigated to maximize the real-time ingest of data for

product generation and availability. Qi et al. (2016) utilized a

time window parameter to prevent the temporal mismatching

of gauge observations to top-of-the-hour gridded QPEs for

bias corrections during ongoing precipitation. This time win-

dow check accounted for the majority of the gauge observa-

tions that failed to pass the MRMS gauge QC scheme. The

acquisition of multiple gauge networks necessitates the iden-

tification of duplicate observations; moreover, the accuracy of

gauge metadata should also be verified prior to use.

The version 12.0 (v12.0) build of the MRMS system

contained the most significant update to the system since the

initial operating capability (IOC) in September 2014. This

study details the gauge ingest and QC performance char-

acteristics of the v12.0 build of the MRMS system over the

CONUS domain, which includes southern Canada and

northern Mexico. Included are the addition of new gauge

data ingests and an expansion of the original gauge QC al-

gorithm adapted from Qi et al. (2016) with proposed new

QC flag designations. The results from the expanded fully

automated gauge QC algorithm are presented in compari-

son to manual QC by National Weather Service (NWS)

forecasters. The study also describes various characteristics

of the gauges ingested into the MRMS system, including

data latency, observation times, duplications of observa-

tions, impacts of gauge location errors, and gauge network

metadata.

2. MRMS gauge ingest

The MRMS system IOC ingested gauges from the

Hydrometeorological Automated Data System (HADS; Kim

et al. 2009) network, primarily due to its availability at the

National Centers for Environmental Prediction (NCEP)

Central Operations (NCO). The HADS network ingest

provided approximately 7000 hourly gauge observations per

hour pre-QC at a 70-min latency for the CONUS, which

allowed gauge-derived and gauge-corrected products to be

available with a latency of 85 min. One significant change

with the MRMS gauge ingest post-IOC was the inclusion of

two additional gauge networks made available in the oper-

ational MRMS real-time feed as of May 2018. Rain gauge

observations from the Meteorological Assimilation Data

Ingest System (MADIS; Helms et al. 2019) network col-

lection were downloaded from five different MADIS data

directories. This included a directory containing the Automated

Surface Observing Systems (ASOS; https://www.weather.gov/

asos/) stations. Gauge observations were reported at various

accumulation periods and were decoded to hourly observations.

The other gauge network was the Flood Control District of

Maricopa County (FCDMC; e.g., Mascaro 2017). The FCDMC

network consisted of 355 Automated Local Evaluation in Real

Time (ALERT) rain gauges over Maricopa County and within

neighboring counties across central Arizona. The addition of

the MADIS and FCDMC gauge data feeds into the MRMS

system increased the number of available unique hourly

gauge observations for the CONUS domain to approximately

18 000–20 000 per hour pre-QC (Fig. 1).

The timing of MRMS gauge-based and gauge-corrected prod-

ucts is based upon optimal gauge data availability and product

development latency. The availability of gauge observations

within theHADSandMADIS networks increased at a steady rate

for the first 65min past valid time (Fig. 2). The stair-stepping in-

crease of the data was primarily based on the update cycle of the

MADIS files every 5min. All gauges from the FCDMC became

available within five minutes past the top of the hour. The

prev12.0 capability of MRMS ingested gauges at 70min past

valid time, which contained approximately 91% of all ob-

servations. The v12.0 build of the MRMS system contained

the capability of creating two passes of gauge-derived and

FIG. 1. Locations of available hourly gauge observations within the

CONUS domain of the MRMS system for v12.0.

FIG. 2. The percent of available gauge observations from the

gauge networks ingested by the MRMS system for the 0–120-min

period following the top-of-the-hour observation time. The ingest

times for the IOC version of MRMS along with the two-pass par-

adigm of MRMS v12.0 are denoted in the graph.
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gauge-corrected products (hereinafter denoted as Pass 1 and

Pass 2). Pass 1 allowed for gauge-based products to be

available earlier than in previous builds. The Pass 1 gauge

ingest occurred at 50min, which captured approximately 65%

of gauge observations and allowed products to be ready prior

to 60min past valid time. The Pass 2 ingest occurred at

111min to incorporate approximately 99.8% of gauge ob-

servations available to the MRMS system. Pass 2 products

were available at a latency of 120min.

3. Gauge quality control

a. Logic advancements

The MRMS system employed a fully automated gauge QC

algorithm to remove evidently erroneous gauge observations

from the generation or correction of various precipitation

products. Qi et al. (2016) describes the automated gauge QC

process as part of the IOC implemented in September 2014.

The decision tree within the IOC-based MRMS gauge QC

algorithm contained a total of 28 nodes that allowed gauge

observation to be classified by one of nine available QC flags

(Qi et al. 2016).

New advancements to the MRMS gauge QC algorithm

were applied throughout the entire automated process. Two

significant changes involved the precipitation sources utilized

in the QC algorithm. The radar QPE used in this study was

the MRMS dual-polarization synthetic QPE scheme (Cocks

et al. 2019; Wang et al. 2019; Zhang et al. 2020) with an evap-

oration correction algorithm (Martinaitis et al. 2018), herein-

after denoted as QDP. This replaced the reflectivity-based

TABLE 1. List of proposed gaugeQCflags for theMRMS system. Included are the description of each flag, if the gauge is retained for use in

the MRMS system based on the flag designation, and the original MRMS gauge QC flags that were depicted in Qi et al. (2016).

Proposed QC flag Gauge QC description Retain in MRMS MRMS IOC QC flag

220 Outside time window of .67min No 22

210 Conditional pass—Zero observation (w/sources present) Yes 21

211 Conditional pass—Zero observation (w/sources missing) Yes 21

212 Conditional pass—Nonzero observation (w/sources present) Yes 21

213 Conditional pass—Nonzero observation (w/sources missing) Yes 21

0 Pass—Zero value Yes 0

1 Pass—Nonzero value Yes 0

10 False zero observation (rain only) No 1

20 False nonzero observation (rain only) No 2

30 Outlier observation—High value (rain only) No 3

31 Outlier observation—High value (snow only) No 3

40 Outlier observation—Low value (rain only) No 4

50 Winter impacts—Zero observation No 5

51 Winter impacts—Nonzero observation No 5

60 Suspect observation—Nonzero observation (w/sources present) No 6

61 Suspect observation—Nonzero observation (w/sources missing) No 6

FIG. 3. Initial section of the MRMS gauge QC decision tree.
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radar-only -QPE (Zhang et al. 2016) used in the IOC version

of the gaugeQCalgorithm.Version 3 of the 1-hHighResolution

Rapid Refresh (HRRR; Benjamin et al. 2016) model quantita-

tive precipitation forecast (QPF) was included to improve the

QC of gauges located outside of adequate radar coverage.

Significant biases in the HRRRQPF precluded a direct value

comparison (e.g., Martinaitis et al. 2020), yet it provided a

means to delineate areas receiving precipitation versus no

precipitation.

One proposed change tested within the new QC algorithm

was increasing the number of gauge QC flags to 16 unique

designations (Table 1). The QC flag structure allowed for more

detailed characterizations of how a gauge observation passed

or failed each hour. The addition of the HRRR QPFs along

with new QC flags and other QC algorithm updates described

in the following subsections resulted in amore complexMRMS

gauge QC decision tree with 103 total nodes.

1) INITIAL GAUGE QC CHECKS AND PAIRINGS

The updated gauge QC logic retained the initial checks for

missing gauge values (denoted as a negative gauge observa-

tion), ensuring the gauge resides within the declared MRMS

domain based on latitude and longitude bounds, and significant

deviations of observation times to prevent incorrect bias ad-

justments during ongoing precipitation events (Fig. 3). The

acceptable time window criteria utilized in this study was in-

creased to 67min from the top of the hour, which allowed for

the inclusion of the ASOS gauge network that generally re-

ported at the time HH:53 (e.g., the 1300 UTC observation re-

ported at 1253 UTC). Increasing the acceptable time window

by 2min from the IOC-based 65-min window allowed for

4.4% more gauges to be available for further QC inspection.

The 67-min time window encompass 92.3% of all ingested

gauge observations (Fig. 4). Gauge observations with a time

stamp outside of the 67-min time window were flagged for

nonuse by the MRMS system.

All remaining gauge observations were spatially matched to

aMRMS grid cell. The IOCMRMS gaugeQC logic employed a

FIG. 4. Distribution of the time shift from the top of the hour for

hourly gauge observations ingested by the MRMS system. The

green highlighted area represents the time window considered by

the MRMS gauge QC algorithm.

FIG. 5. One-hour accumulation of (a) the MRMS radar-only QPE and (b) the MRMS locally gauge corrected

radar QPE that was influenced by the gauge AR589 northeast of Okeechobee, Florida, for the 1-h period ending

2200 UTC 27 Sep 2017. The gauge AR589 is represented by a bubble plot that is color filled with its bias ratio

compared to its collocated grid cell of MRMS-generated QPE. Depicted around AR589 in (a) is the 5-km search

radius (dark red circle) to best match the gauge with a MRMS radar-only QPE value and the MRMS grid cell (red

square) that best matched the gauge AR589.
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5-km radius around the grid cell containing the gauge obser-

vation to pair the gauge observation to the best-matching

gridded hourly radar QPE value (Qi et al. 2016); however, the

best-matching radius check presented challenges with errone-

ous gauge observations and the subsequent interpolation of the

erroneous values into a bias-correction radar QPE. The ex-

ample convective rainfall event northeast of Okeechobee,

Florida, demonstrated the best-matching search radius chal-

lenges. Convective rainfall produced localized hourly accu-

mulations of 25–37mm ending 2200 UTC 27 September 2017

(Fig. 5a). The gauge AR589 for the same 1-h accumulation

period recorded 1.27mm, yet the MRMS hourly radar QPE

was 28.7mm at its collocated grid cell. The 5-km radius for

spatial matching paired the gauge AR589 with a grid cell

having a best-matched value of 2.03mm at the edge of the

convective rainfall footprint, and the gauge was subsequently

passed. The local gauge-correction scheme in MRMS (Zhang

et al. 2016) would then calculate the radar–gauge difference at

the grid cell containing the gauge and interpolate that

difference using an inverse distance weighting scheme. The

interpolation of the significant radar–gauge difference at

the collocated grid cell falsely reduced the spatial coverage

and magnitude of the accumulated precipitation for this

event (Fig. 5b).

A sensitivity analysis was conducted to determine the ap-

propriate spatial matching search radius to still account for

some horizontal advection of hydrometeors. Hourly gauge

observations ingested by the MRMS system from 1 August

2018 to 29 February 2019 were compared against the MRMS

QDP product at each collocated grid cell and over various radii

from 1 to 9 km (Fig. 6). Approximately 92.4% of all gauge

observations matched with the QDP value at the grid cell col-

located with the gauge. All radius-based matching had,2% of

the observations each for each radius range with 1 km re-

cording the greatest percentage at 1.91%. Half of the nonzero

gauge values matched with their collocated grid cell or grid

cells within 1 km of the gauge site. The percent of gauge ob-

servation best matched withQDP grid cells decreased out to the

5-km radius and then increased up to the 9-km radius. This was

likely attributed to the greater number of gridded QDP esti-

mations that the gauge can be paired against. The proposed

gauge QC scheme reduced the radius configuration from 5 to

1 km for spatial matching. Application of a 1-km radial check

for best matching the gauge to the gridded QPE would have

properly resulted in the failure of the gauge AR589.

The gauge QC decision tree separated the matched obser-

vations into four categories based on whether the gauge

recorded any liquid or liquid-equivalent precipitation and the

surface wet-bulb temperature TW as defined by the HRRR

model (Fig. 3). A surface TW # 0.008C was used to define winter

precipitation environments (Martinaitis et al. 2015). Utilization of

the surface TW allowed for the identification of winter precipitation

in above-freezing ambient temperatures and nonsaturated relative

humidity values (e.g., Matsuo and Sasyo 1981). The separation

FIG. 6. Radius-matching of gauge observations to the MRMSQDP product for (a) all observations, (b) for gauge values that were zero,

and (c) gauge values that were nonzero for the period 1 Aug 2018–29 Feb 2019. The percent of observations were broken down by those

that the best-matchingMRMS grid cell did not radially match beyond its collocated grid cell, and radial matching up to 1, 3, 5, 7, and 9 km,

respectively.
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of gauge observations based on their values and on the surface

TW permitted the use of unique QC logic and QC flags for each

category.

2) NONZERO GAUGE VALUES IN NONWINTER

ENVIRONMENTS

The QC of hourly nonzero gauge observations in nonwinter

environments began with the comparison of the gauge loca-

tions with respect to radar coverage via the Radar Quality

Index (RQI) product (Fig. 7) defined by Zhang et al. (2012)

and updated by Martinaitis et al. (2020). RQI quantifies the

adequacy of radar coverage based upon radar beam blockage

and radar beam height characteristics related to the freezing-

level height and other reference height variables. RQI values

ranged from 1.00 to 0.00, where RQI 5 1.00 represented a

completely unblocked radar beam below the melting layer. A

decision point in the QC methodology occurred at RQI5 0.40

where it has been shown that radar coverage begins to signif-

icantly overshoot shallow precipitation features.

Gauge sites that resided in regions defined by RQI $

0.40 were compared directly to the QDP product (Fig. 7).

Nonzero gauge observations failed QC when the collo-

cated region had no radar-detected accumulated precipi-

tation. The gauge underwent outlier checks if there was

accumulated precipitation with QDP. The gauge value was

compared against an expected maximum value Rmax and

minimum value Rmin based on the best matched QDP

hourly accumulation and RQI via

R
max

5 (9:002 6:50x)Q
(0:15x10:76)
DP 1 (0:43x1 0:86), (1)

and

R
min

5 (0:26x2 0:06)Q
(1:5020:30x)
DP , (2)

FIG. 7. MRMS gauge QC decision tree for hourly gauge observations reporting nonzero accumulations in environments

characterized by TW . 0.008C.
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where x is the RQI value at the grid cell containing the best

spatially matched QDP value. The addition of RQI to the

outlier check equations allowed for threshold Rmax and Rmin

values to be based dynamically on the uncertainty in radar

quality (Fig. 8) and were subjectively derived using a control

dataset of approximately 95 000 nonzero gauge observations

across theRQI spectrum.Gauge observations beyond theRmax

and Rmin values were flagged as outlier high and outlier low

observations, respectively.

Gauge sites that resided in areas where QDP was missing or

where RQI , 0.40 due to the radar coverage overshooting

precipitation features at farther distances utilized a different

logic set that included precipitation data from the 1-h HRRR

model QPF (Fig. 7). Radar-based QDP was included in the

nonzero comparison given the potential for the radar to detect

precipitation when RQI , 0.40. QDP was not included in the

identification of false nonzero observations when RQI , 0.40

FIG. 8. Dynamic outlier checks based on the equations for Rmax

and Rmin for hourly nonzero gauge observations located in ade-

quate radar coverage areas based on the RQI range 0.40–1.00 and

in environments characterized by TW . 0.008C.

FIG. 9. As in Fig. 7, but for hourly gauge observations reporting nonzero accumulations in environments characterized by TW # 0.008C.
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given the overshooting of shallow precipitation features, which

could erroneously fail a nonzero gauge observations. The

overall coverage of the HRRR allowed for a more accurate

representation of where precipitation did not occur in the areas

of reduced radar coverage.

A best matched nonzero value from the 1-h HRRR model

QPF orQDP in regions where RQI, 0.40 resulted in a suspect

observation check. The suspect check was applied given the

nonuse of direct value comparisons of the gauge to QDP and

the HRRRQPF due to uncertainties inQDP when RQI, 0.40

and biases in the HRRRmodel. Hourly observations$ 50.8mm

were flagged as a suspect value, given the rarity of hourly rainfall

accumulations $ 50.8mm in data-sparse regions. Gauge

values , 50.8mm were conditionally passed given the chal-

lenges of making direct numerical comparisons between the

gridded product and the gauge. Different conditional flag and

suspect flag designations were utilized based on the avail-

ability of comparative data.

3) NONZERO GAUGE VALUES IN WINTER

ENVIRONMENTS

Martinaitis et al. (2015) identified various challenges with

automated hourly gauge observations during winter precipi-

tation events and the widespread occurrence of winter impacts

on the liquid-equivalent values. Results from the study showed

that utilizing gauges in winter precipitation regimes without a

stringent QC scheme generated worse results for locally bias-

corrected QPEs than a radar-only approach in winter precip-

itation. The study showed it was more advantageous to not bias

correct radar-derived QPE with gauges; however, biases in

radar-generated QPE still exist and would still need to be

corrected for. The updated gauge QC algorithm in this study

retained gauge observations in winter environments for QPE

correction and verification in MRMS through stricter QC

measures than the measures employed for gauges in nonwinter

environments.

The logic for nonzero hourly gauge accumulations in winter

environments (i.e., when model surface TW # 0.008C) was

identical to that of the nonwinter environment logic apart from

changes relating to defining outlier values and the suspect

check threshold (Fig. 9). The suspect check threshold value was

set to 10.16mm for hourly liquid-equivalent gauge values when

TW # 0.008C. The suspect value check was applied regardless

FIG. 10. Outlier checks based on the equations for Wmax and

Wmin for hourly nonzero gauge observations located in adequate

radar coverage areas based on the RQI range 0.40–1.00 and in

environments characterized by TW# 0.008C. Also depicted are the

suspect value constraints that influence the outlier check per the

gauge QC logic of Fig. 9.

FIG. 11. As in Fig. 7, but for hourly gauge observations reporting zero accumulations in environments characterized by TW . 0.008C.
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of radar coverage or radar data availability to remove erro-

neously high values, since hourly liquid accumulations ex-

ceeding 10.16mm are rare (e.g., Kirkham et al. 2019). Gauge

observations in regions where RQI $ 0.40 were analyzed with

outlier equations using an expected winter environment max-

imum value Wmax and minimum value Wmin based on best

matched QDP hourly accumulation and were defined as the

following:

W
max

5 (1:153Q
DP

)1 0:5, (3)

and

W
min

5 0:83Q
DP

. (4)

These equations were more aggressive in removing lower

gauge values compared toQDP (Fig. 10) to account for findings

by Martinaitis et al. (2015) that characterized the impacts of

winter precipitation on gauges that produced a nonzero value.

The restrictive nature of Eqs. (3) and (4) limit the passing rate

of nonzero gauge observations in winter precipitation to ap-

proximately 39% based on analysis of 180 000 hourly gauge

observations. Gauge observations found to be less than Wmin

were designated with a winter impacts flag for nonzero

observation.

4) ZERO GAUGE VALUE IN NONWINTER

ENVIRONMENTS

Logic for gauge observations that record no hourly precip-

itation depended upon the availability of radar-derived QPE

and HRRR model QPF to determine the quality of the ob-

servation (Fig. 11). Matching the zero gauge value to the

gridded QDP data yielded a direct pass or fail decision when

radar coverage was deemed to be adequate (i.e., RQI $ 0.40)

and available. Instances of poor radar coverage (RQI , 0.40)

or when radar data was not available relied upon the HRRR

model QPF as the QC check. A zero gauge observation would

fail if the HRRR model QPF or the QDP product had a best-

matched nonzero value, while it would conditionally pass if the

HRRR model QPF was zero or missing.

5) ZERO GAUGE VALUE IN WINTER ENVIRONMENTS

The logic for gauge observations that record no hourly pre-

cipitation in winter environments was identical to that of the

nonwinter environment logic except for how the gauge was

flagged for nonuse in the MRMS system (Fig. 12). Gauges that

were best matched with a grid cell containingQDP or 1-hHRRR

model QPF values . 0 were flagged as having winter weather

impacts instead of a false zero observation. This allowed for

identification of gauge observations that could have been com-

promised by winter precipitation that either blocked the gauge

orifice or accumulated on the gauge orifice walls and prevented

the recording of a nonzero observation (Goodison et al. 1998).

b. Analysis of gauge QC

A 21-month dataset of hourly gauge observations ingested

by the MRMS system from 0000 UTC 1 November 2017 to

FIG. 12. As in Fig. 7, but for hourly gauge observations reporting zero accumulations in environments characterized by TW # 0.008C.

TABLE 2. The average number and percent of gauge observa-

tions per hour that were passed, conditionally passed, and failed by

the MRMS gauge QC algorithm presented in this study.

Gauge pass/fail group

Number of

observations

per hour

Percent of

observations

per hour

Passed QC 14 435 78.89%

Conditionally passed QC 1416 7.74%

Failed QC 2447 13.37%

SEPTEMBER 2021 MART INA I T I S ET AL . 2463

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 09/17/21 08:32 PM UTC



2300 UTC 31 July 2019 were processed by the new gauge QC

logic. Hours that had at least 75% of total available hourly

observations present were included in the analysis. This

encompassed 13 616 h that totaled approximately 2.492 3 108

hourly gauge observations.

The 13 616 h evaluated contained an average of 18 298

hourly gauge observations per hour. The presented gauge

QC algorithm would pass approximately 14 435 observa-

tions per hour and conditionally pass approximately 1416

observations per hour (Table 2). The combination of these

two QC classifications represented 86.63% of the observa-

tions retained for use within the MRMS system. The re-

maining 13.37% (approximately 2447) observations per

hour were flagged as failing the gauge QC algorithm and not

utilized by the MRMS system.

Seasonal variabilities existed in the proportion of gauges

that were passed, conditionally passed, and failed (Fig. 13).

Quantified seasonal statistics (Table 3) showed theDecember–

February (DJF) cool season period had a greater percentage

of gauges that failed QC (14.9%) than in the June–August

(JJA) warm season period (11.8%). The proportion of

hourly gauge observations retained for use (i.e., observa-

tions flagged as passed or conditionally passed) had vari-

ability as well. Observations during the DJF months had a

smaller percentage of passing flags (76.2%) than the JJAmonths

(81.4%), while more gauges were conditionally passed in the

DJF months (8.9%) than the JJA months (6.8%). This was a

result of reduced RQI values in the DJF months from lower

freezing-level heights, a prominent factor in calculating RQI

(Zhang et al. 2012; Martinaitis et al. 2020). There was also

greater variability in the average gauge counts for the overall

pass/fail conditions during the DJF months with standard

deviation values that were more than double that during the

JJA months.

Percent contributions of the individual QC flags highlighted

the seasonal variabilities throughout the different pass/fail

conditions derived from the gauge QC scheme. Gauges that

were passed were predominantly labeled with QC Flag 5 0

(passed with a zero value; Fig. 14), which accounted for about

75.55% of all observations (Table 4). An average of 3.34% of

gauge observations were passed with nonzero values (QC

Flag 5 1). Some seasonal oscillations were noted in the data.

Increased passing nonzero values and decreased passing zero

values were observed during theDJF periods due to large-scale

synoptic systems moving across the CONUS. Seasonal varia-

tions were more remarkable within the observations labeled

with QC Flag 5 210 (Fig. 15), the predominant conditionally

passed flag for zero gauge observations that accounted for an

average of 7.30% of all observations (Table 4). All other flags

designated as conditionally passed were on average#0.33% of

all observations, with more nonzero observations that were

conditionally passed occurring during the non-JJA months.

The 10 flags that classified failed gauge observations had

varying impacts across the 21-month study period. Gauges

flagged as being outside the 67-min time window (QC

Flag 5 220) were approximately 8.56% of all observations

(Fig. 16a; Table 4). This was on average the second most uti-

lized flag designation behind QC Flag 5 0 (passed gauge

FIG. 13. Number of gauge observations per hour that were passed (green line), conditionally

passed (blue line), and failed (red line) by the MRMS gauge QC algorithm for the 21-month

study period from November 2017 to July 2019.

TABLE 3. Breakdown of the average number, percent, and standard deviation of gauges that were passed, conditionally (cond.) passed,

and failed by the MRMS gauge QC algorithm for each season. Also listed were the number of hours of observations available per season

across the 21-month study period.

Season Available hours

Average gauge count Percentage Standard deviation

Pass Cond. pass Fail Pass Cond. pass Fail Pass Cond. pass Fail

DJF 3040 13 989 1627 2736 76.2% 8.9% 14.9% 1193 405 605

MAM 4206 14 356 1461 2475 78.5% 8.0% 13.5% 899 293 414

JJA 3572 15 136 1267 2189 81.4% 6.8% 11.8% 501 161 221

SON 2798 14 148 1312 2421 79.1% 7.3% 13.6% 1041 335 352
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observations with zero values). The two dominant QC flags

that failed gauges in rain regimes were those that were false

zero (QC Flag 5 10) and false nonzero (QC Flag 5 20) ob-

servations (Fig. 16b). Those two classifications represented

1.85% and 1.75% of all observations, respectively (Table 4).

There were no discernible seasonal patterns for false zero

observations; however, false nonzero observations were flag-

ged more often in the October–April period. Periods of in-

creased flagging of false precipitation classifications correlated

with the winter impacts flag for zero observations (QC Flag 5
50; Fig. 16c). The winter precipitation flag for zero observa-

tions represented an average of 1.02% of all observations

(Table 4), yet the gauge QC algorithm classified .2.0% of

observations with this flag for 2474 h, .5.0% of observations

for 447 h, and.10.0% of observations for 43 h. A similar trend

was found in the false nonzero observations for hours following

the gauges flagged with winter precipitation impacts (Fig. 16b),

which matched the findings of Martinaitis et al. (2015) re-

garding widespread blockage of gauge observations and post-

event thaw from winter precipitation. Gauge observations

flagged as suspect observations were ,0.01% of all observa-

tions (Table 4) and had some increase in use during the

October–April period (Fig. 16d).

Overall statistical results were similar to Qi et al. (2016), yet

the presented gauge QC algorithm generated improvements in

three key aspects: the ability to perform a comprehensive QC

on gauge in winter precipitation regimes, the use of dynamic

outlier power curves to improve the removal of erroneous

nonzero gauge observations, and the additional QC of gauges

outside of adequate radar coverage (i.e., when RQI , 0.40).

The authors consider the QC of gauges in poor or nonex-

istent radar coverage to be the most consequential. The

ability to analyze gauges with nonradar sources prevented

the creation of false precipitation areas despite not con-

ducted direct value comparisons. This was most notable

during the melting of winter precipitation. Previous QC

would allow reasonable nonzero gauge values when RQI,
0.10 to be conditionally passed, and would subsequently

create areas of false precipitation (e.g., Fig. 17a). If the

HRRR model identified no precipitation features in the

area, then the QC logic would correctly flag the gauges as

false precipitation values, and no hourly precipitation

would be generated (e.g., Fig. 17b).

c. Comparison to manual QC

Forecasters at NWS River Forecast Centers (RFCs) can

manually analyze and flag erroneous gauge observations to

create accurate Multisensor Precipitation Estimates (MPE;

Young et al. 2000). One method for testing the skill of the fully

automated MRMS gauge QC algorithm was to compare its

results to that of manual human intervention. The NWS Lower

Mississippi RFC (LMRFC) retained records of gauges that

were removed by forecasters for the generation of MPE. This

study compared gauges that weremanually flagged by LMRFC

to the gauges flagged as failed by the fully automated MRMS

gaugeQC algorithm. Each gauge observationmanually flagged

byLMRFCwas classifiedwith one of five designations (Table 5).

TheLMRFCQCflags were directly comparable to the proposed

FIG. 14. Percent of gauge observations per hour that were designated with QC flags

representing a passed gauge.

TABLE 4. The percent of gauge observations per proposed gauge

QC flag for the 21-month study period. The table is separated into

the three pass/fail group of flags from the QC algorithm.

Gauge pass/fail group

Proposed gauge

QC flag

Percent of

observations

Passed QC 0 75.55%

1 3.34%

Conditionally passed QC 210 7.30%

211 0.11%

212 0.33%

213 ,0.01%

Failed QC 220 8.56%

10 1.85%

20 1.75%

30 0.04%

31 0.02%

40 0.07%

50 1.02%

51 0.05%

60 ,0.01%

61 ,0.01%
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FIG. 15. Percent of gauge observations per hour that were designated with QC flags

representing a conditionally passed gauge.

FIG. 16. Percent of gauge observations per hour that were designated with QC flags repre-

senting a failed gauge broken down by the following themes: (a) time-based QC, (b) QC

conducted in rain regimes (i.e., TW . 0.008C), (c) QC conducted in snow regimes (i.e., TW #

0.008C), and (d) QC for suspect observations.
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MRMS QC flag classifications. Some MRMS flag classifica-

tions were applicable for multiple LMRFC QC flags.

Comparisons between the MRMS and LMRFC gauge QC

results over the LMRFC domain (Fig. 18) were conducted

over a 21-month period from November 2017 to July 2019. A

total of 6461 hourly gauge observations were matched between

the LMRFC and MRMS gauge datasets. Approximately

85.53% of the observations were both flagged by MRMS and

LMRFC (Table 6). The 14.47% that did not match (i.e., when

the MRMS gauge QC passed the observation) could be at-

tributed to the fact that LMRFC flagging a gauge does not

mean a failed observation and its removal from precipitation

generation. LMRFC forecasters could identify a potentially

erroneous gauge observation during a given hour when ana-

lyzing data for operational QPE generations. Subsequent ac-

cumulations and temporal analysis of said gauge could later

deem it accurate for use in LMRFC QPE production. This

would encompass situations where LMRFC forecasters could

initially deem a gauge observation as questionable for a given

hour, yet 24-h evaluations found the gauge to be performing

nominally. The questioned observation would then be retained

for use in LMRFC QPE generation.

The reasoning for the observation being flagged when both

MRMS and LMRFC flagged a gauge matched 95.82% of the

time. The breakdown of the gauge observations that had mis-

matching QC flags between LMRFC and MRMS showed that

84.42% of mismatches were when the gauge was outside of

the67-min window as designated by theMRMSQC logic (i.e.,

classified with QC Flag 5 220; Fig. 19). The outside time

window QC flag in MRMS was not considered within the

LMRFC classifications. If the gauges flagged by the MRMS

time constraint condition were excluded from the analysis,

then the matching of QC flags between MRMS and LMRFC

were correctly paired 99.32% of the time. This demonstrated

that the fully automated QC system within MRMS was com-

parable to the manual QC conducted by forecasters each hour.

4. Observational characteristics

a. Duplication of observations

The ingest and combination of multiple gauge network feeds

into the MRMS system introduced the opportunity for dupli-

cate gauge observations, since observations overlapped be-

tween the HADS and MADIS datasets. Duplications were

FIG. 17. Comparison of MRMS Mountain Mapper QPE over western Montana and northern Idaho for the 1-h

accumulation ending 1900 UTC 3 Apr 2018 using (a) the previous gauge QC logic defined by Qi et al. (2016) and

(b) the gaugeQC logic presented in this study. HourlyHADS andMADIS gauges were classified by three different

categories: when both gauge and gridded QPE values were zero (G, R5 0.00; green crosses), when the gauge was

nonzero and the gridded QPE was zero (G . 0.00, R 5 0.00; red circles), and when the gauge was nonzero (G .
0.00) and was conditionally passed in regions of inadequate radar coverage (white circles). The hourly RQI values

(gray shading) and radar locations (blue crosses) were provided to characterize the radar coverage in the region.

TABLE 5. The QC flags from LMRFC. Listed are the description of

each flag and the corresponding MRMS gauge QC flag(s).

LMRFC

flag LMRFC flag description

Corresponding

MRMS flags

L Light gauge value when no

precipitation is present

20

O Overestimation gauge value 30, 31

U Underestimated gauge value 40, 51

Z Zero gauge value when

precipitation is present

10, 50

E Extreme or false gauge value 20, 30, 31, 60, 61
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mitigated in the MRMS system based on matching gauge

identifications. Priority was given to the HADS network when

duplicate observations existed. Analysis of the HADS and

MADIS network feeds ingested into the MRMS system from

June to October 2017 found 1494 unique gauge IDs that were

duplicated but had different latitude and/or longitude coordi-

nates. This accounted for 21.4% of the HADS network sites.

Approximately 92.24% of the gauge sites that were identified

had location variances # 5.00 km between the HADS and

MADIS site location (Table 7). A total of 75.97% of all

observations had a difference of #1.00 km (the spatial res-

olution of the MRMS grid). Most differences in the site

coordinates for spatial differences # 5.00 km were attrib-

uted to rounding and precision differences, including when

converting coordinates from degrees, minutes, seconds to

decimal degrees (Table 8).

The remaining 7.76% of site coordinates differences iden-

tified from June to October 2017 resulted in spatial variances

. 5.00 km. There were no discernable primary causes for the

differences in site coordinates between the two networks.

Large spatial discrepancies were either a result of one or both

of the latitude and longitude coordinates being significantly

different between the two providing networks (Table 8).

b. Location errors

Location accuracy of a gauge site is critical for its utility

within a high spatial resolution grid. Any spatial error in the

application of a gauge can provide a mischaracterization of the

rainfall quality during the verification process. Spatial mis-

matching through locational errors can also introduce irregular

bias corrections of a gridded QPE product. The creation of a

single gauge list through the combination of various gauge

networks and the subsequent identification of location differ-

ences via site duplications in the MRMS system necessitated a

review of the accuracy of the latitude and longitude coordi-

nates and the performance impact it had on theMRMS system.

A total of 838 ASOS sites were evaluated for their location

accuracy and compared to the MRMS radar-only QPE from

0000UTC 1 January 2015 to 2300UTC 31December 2015 over

the CONUS. The latitude and longitude coordinates were

obtained from the NWS Location Identifiers (NWSLI) data-

base. Visual identification of the ASOS sites were conducted

using satellite imagery from the Google Earth system, a plat-

form image and mapping dataset using locational information

and extrapolated satellite imagery. Studies of various cities and

regions across the world had found the horizontal positional

accuracy of Google Earth to have a mean offset distance of

4.0–7.0m with an average horizontal RMSE of 1.8–5.0m (e.g.,

Paredes-Hernández et al. 2013; Mohammed et al. 2013;

FIG. 18. Locations of available hourly gauge observations in the

MRMS system within the LMRFC area of interest.

TABLE 6. Analysis of comparing for gauges that were flagged by

LMRFCvs theMRMS gaugeQC algorithm. Three categories were

analyzed in the QC comparisons based on if both MRMS and

LRMFC flagged the gauge and if the QC flags matched (per

Table 5). Listed are both the number of and percent of gauges for

each category.

Both MRMS and

LMRFC flag gauge Matching flags Count Percent

Yes Yes 5295 81.95%

Yes No 231 3.58%

No N/A 935 14.47%

FIG. 19. Distribution of flag mismatches between the MRMS gauge QC algorithm and the LMRFC flag

designations.
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Farah and Algarni 2014). The imaging quality of the satellite

data varied at each location; thus, the identification of the

ASOS power supply box was used as the verification coordi-

nate. A total of 817 ASOS stations were identified and recor-

ded through visual inspection within Google Earth, while 21

stations were unable to be located through visual inspection.

The distance between the ASOS site locations from

the NWSLI database and the Google Earth satellite site

identifications were calculated using the Haversine for-

mula. Approximately 83.57% of ASOS NWSLI coordi-

nates were within 1.00 km of the Google Earth identified

location (Table 9). The majority of these differences were

between 0.25 and 1.00 km (e.g., Fig. 20a). The remaining

16.43% of horizontal positional differences were classified

as .1.00 km (e.g., Fig. 20b). Only five ASOS sites (0.61%)

had locational differences between Google Earth and

NWSLI that were within the upper bound of mean offset

distance differences (i.e., ,7.0 m) found in the horizontal

positional studies.

The Google Earth defined locations resulted in 79.31% of

identified ASOS sites residing in a different MRMS grid cell

compared to the NWSLI coordinates. The impacts of having

gauge sites located outside of their true location were

demonstrated through a QPE collocation comparison be-

tween the NWSLI and Google Earth coordinates for only

the ASOS sites where the different coordinates resided

in different grid cells. The MRMS radar-only QPE from

0000 UTC 1 January to 2300 UTC 31 December 2015 was

utilized as the gridded QPE. Situations where the gridded

radar-only QPE was zero at both the NWSLI and Google

Earth coordinates were excluded from the analysis. This

resulted in a sample size of 246 504 observations.

Comparisons between the hourly gauge observations and

the MRMS radar-only QPE values based on the NWSLI co-

ordinates showed a number of outlier pairings (Fig. 21a). The

most notable outlier data pairs were instances when the gauge

value was nonzero while the collocated grid point based on the

NWSLI coordinates had a zero QPE value. Applying the new

gauge coordinates based on Google Earth mitigated the gauge

pairings with zero QPE values and reduced the overall scatter

of the data pairings (Fig. 21b). Statistical evaluations of the

gauge versus MRMS radar-only QPE values when utilizing the

two different coordinate locations depicted a 7.8% improve-

ment of the root-mean-square error from 2.418 to 2.230mm

using the Google Earth coordinates; moreover, the correlation

coefficient improved from 0.776 to 0.810 (Table 10). There was

an increase in the underestimation signal of the MRMS radar-

only QPE through the mean bias ratio value using the Google

Earth coordinates; however, this finding was better aligned

with other studies that analyzed the performance of MRMS

radar-only QPE, particularly in cool season environments

(Cocks et al. 2016, 2017).

c. Instrumentation characteristics

Numerous studies regarding the identification and quantifi-

cation of various rain gauge observational limitations included

methodologies for adjusting these observations. Extensive

analyses derived from atmospheric conditions (e.g., Goodison

et al. 1998; Yang et al. 1998) or from mechanical limitations

(e.g., Parsons 1941) highlighted the potential biases that can

occur from wetting losses, evaporation, wind undercatch, and

tipping limitations (e.g., maximum tipping rate, double tips,

etc.). Variances in the percent of losses were shown to be de-

pendent upon the precipitation type and atmospheric condi-

tions; however, Goodison et al. (1998) demonstrated how catch

ratios were also dependent on the design and instrumentation

of the gauges themselves.

Research that examined just the effects of wind undercatch

and attempted to adjust for it had varying adjustment equa-

tions for both liquid precipitation and solid winter precipita-

tion (Fig. 22; Table 11). There was a significant distinction

between equations applied for rainfall events versus solid

winter precipitation events where adjustment equations for

TABLE 7. The percent of site coordinate distance differences

(km) from duplicate observations between theHADS andMADIS

network collections as seen within the MRMS system.

Distance difference in site

coordinates (km)

Percent of duplicate sites with

different coordinates

D # 0.1 km 64.32%

0.1 km , D # 1.0 km 11.65%

1.0 km , D # 5.0 km 16.27%

5.0 km , D # 10.0 km 1.81%

10.0 km , D # 50.0 km 2.07%

D , 50.0 km 3.88%

TABLE 8. Example gauge observations of distance differences (km) between sites listed in bothHADS andMADIS. Listed are the latitude

and longitude values for each example gauge site.

Site ID

HADS MADIS

Distance difference (km)Latitude (8) Longitude (8) Latitude (8) Longitude (8)

CBBN5 35.9419 2107.0772 35.9419 2107.0773 0.009

RNDC1 41.4269 2121.4625 41.4270 2121.4626 0.014

STBM3 42.0828 272.0575 42.0825 272.0583 0.074

VLCC1 33.2369 2117.0142 33.2370 2117.0086 0.521

BEFM8 47.4889 2112.8800 47.5000 2112.9000 1.945

GOSC1 33.0844 2116.6714 33.0843 2116.8769 19.146

CTLN2 39.4750 2114.9861 38.9038 2114.8142 65.219

BDAN2 32.8211 2106.8819 33.8210 2106.8819 111.184
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solid winter precipitation were much more aggressive compared

to rainfall-based equations. Previous studies pertaining to snowfall

were capped at 5–7ms21 due to challenges in generating a cor-

rection factor in winds exceeding 7ms21; moreover, blowing

snow can also attribute to inaccuracies in a gauge observation

(e.g., Goodison et al. 1998). Other meteorological factors were

also shown to influence some adjustment equations. Some

rainfall-based equations considered the instantaneous rain rate

when adjusting for wind undercatch (Table 11). Førland et al.

(1996) utilized the ambient temperature to adjust for wind un-

dercatch in snow (Table 11). Application of a temperature com-

ponent to the Førland et al. (1996) adjustment equation showed a

2% difference per degree Celsius at a wind speed of 5ms21.

Differences in the adjustment equations were also noted

between those applied to shielded gauges versus unshielded

gauges (Fig. 22). Variations in the rainfall-based equations

with respect to shield availability were shown to be minimal.

Previous studies by Duchon and Essenberg (2001) and Yang

et al. (1998) demonstrated that the use of a wind shield during a

rainfall event would reduce wind undercatch by 1%–3%;

however, those studies examined events where the winds

were #15m s21. It is unknown if a larger disparity exists be-

tween shielded and unshielded gauges during more significant

wind events (e.g., tropical cyclones). The application of a wind

shield was shown to be significant for solid winter precipitation,

particularly snowfall. Adjustment ratios for shielded gauges

ranged from 1.50 to 3.45 at a wind magnitude of 7m s21, while

unshielded gauges had adjustment ratios of 5.20–6.65 at the

same wind magnitude.

Each of the aforementioned studies that examined obser-

vational adjustments focused on a singular gauge type where

gauge instrumentation characteristics were known, but this

information is not available in large collections of gauge net-

works. Publicly available metadata provided with gauge col-

lections generally consisted of the site identifier, the latitude

and longitude coordinates, and occasionally other information

such as the elevation of the station above mean sea level and

the source network of the gauge. The metadata information

needed to provide accurate adjustments for overcoming ob-

servational limitations are not freely available; moreover, the

lack of gauge instrumentation characteristics would not permit

for accurate adjustment equations.

The work by Martinaitis et al. (2021) highlighted the short-

comings of adjusting for wind undercatch in rainfall through a

TABLE 9. The percent of site coordinate distance differences

(km) from the coordinates of ASOS sites provided by NWSLI and

those identified within Google Earth.

Distance difference in site

coordinates (km) Percent of ASOS sites

D # 0.10 km 13.11%

0.10 km , D # 0.25 km 15.56%

0.25 km , D # 0.50 km 25.12%

0.50 km , D # 1.00 km 29.78%

1.00 km , D # 2.00 km 12.99%

2.00 km , D # 10.00 km 3.07%

D , 10.0 km 0.37%

FIG. 20. Example illustrations of the difference between the location of gauges inGoogle Earth using the NWSLI

latitude and longitude coordinates vs the locations of ASOS gauges in the Google Earth system for the gauges

(a) Albany, NY (KALB), and (b) Austin, TX (KATT).
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blanket methodology given the lack of metadata on gauge in-

strumentation characteristics. Assumptions were made to tai-

lor the adjustment equation to the gauge properties. A singular

adjustment equation was applied, since it was unknown what

gauges were shielded or not given the lack of wind shield

metadata; moreover, the difference in wind undercatch errors

between shielded and unshielded gauges was shown to be

negligible in previous research (Duchon and Essenberg 2001;

Yang et al. 1998). The height of all gauges was assumed to be

1.00m given the need to interpolate 10-m winds down to a

gauge height. It was also presumed that all hourly gauge ob-

servations have an 8-in. (20.3 cm) diameter orifice, yet Ne�spor

and Sevruk (1999) demonstrated that wind-induced errors

varied based on the orifice diameter. While the results of

applying a single conceptual wind undercatch correction to all

observations yielded positive results, it is unknown how accu-

rate those adjustments were. Applying a similar single meth-

odology to winter precipitation would likely lead to reduced

confidence in the correction for wind undercatch given the

importance of knowing if a wind shield exists when adjusting

the gauge observations.

5. Summary

TheMRMS v12.0 system update afforded the opportunity to

evaluate all aspects of the ingest and QC of hourly gauge ob-

servations within theMRMS system. The addition of new feeds

increased the number of hourly gauge observations that

were available pre-QC from approximately 7000 to 18 000–

20 000 per hour; moreover, analysis of the data latency character-

istics showed that about 65%of all observations would be available

for a quicker development of gauge-based and gauge-adjusted

products in the new two-pass paradigm of product delivery.

New advancements were introduced in the fully automated

MRMS gauge QC algorithm, including the use of HRRR

model QPF as ameans toQC gauges outside of adequate radar

coverage, the use of dynamic outlier curves in regions of ade-

quate radar coverage, and new logic to handle gauges in winter

precipitation environments. Updates were also made to the

best-matching radial check and the time window check.

Analysis of a 21-month dataset showed that approximately

86.63% of gauge observations per hour were passed or condi-

tionally passed for use in the MRMS system. The majority of

gauges that were failed fell outside of the67-min time window

designed to prevent the mismatching of observations to top-of-

the-hour griddedQPEs. Gauges that were failed by theMRMS

system were compared to manual gauge QC conducted by the

NWS LMRFC. The reasons for flagging a gauge matched

for .95% of observations.

Other characteristics of the gauge ingest process were

identified throughout the study. The utilization of HADS and

MADIS networks introduced the opportunity for duplicate

observations. Most discrepancies in the duplicate observa-

tions were a result of precision and rounding differences in

gauge latitude and longitude coordinates. Investigations of the

ASOS gauge network showed that.16% of ASOS coordinates

FIG. 21. Density scatterplots comparing hourly gauge observations (mm) to hourlyMRMS radar-onlyQPE (mm)

at the collocatedMRMS grid cell based on gauge locations from (a) the NWSLI coordinates and (b) Google Earth

for the study period 0000 UTC 1 Jan–2300 UTC 31 Dec 2015. ASOS sites considered in the analysis were those

where the different coordinates between NWSLI and Google Earth resided in different MRMS grid cells. Hours

where the gridded MRMS radar-only QPE was zero at both the NWSLI and Google Earth coordinates were also

excluded.

TABLE 10. Statistical analysis of ASOS gauge sites based on their

NWSLI site coordinates vs the coordinates identified via Google

Earth. Listed are the mean bias ratio (radar vs gauge), mean error

(mm), root-mean-square error (RMSE; mm), and correlation co-

efficient (CC). ASOS sites considered in the analysis were those

where the different coordinates between NWSLI and Google

Earth resided in different MRMS grid cells. Hours where the

gridded MRMS radar-only QPE was zero at both the NWSLI and

Google Earth coordinates were also excluded.

Coordinate

source

Mean

bias ratio

Mean

error (mm)

RMSE

(mm) CC

NWSLI 0.917 0.169 2.418 0.776

Google Earth 0.892 0.225 2.230 0.810
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differed by .1.0 km when identified through Google Earth;

moreover, over 79% of differences in the ASOS latitude and

longitude coordinates resulted in the gauge being located in a

different MRMS grid cell. The utilization of new Google

Earth-defined coordinates improved the comparisons of gauge

observations to gridded MRMS radar-only QPEs. These find-

ings were delivered to the NWS and resulted in changes to the

ASOS metadata.

Previous studies made efforts to adjust for limitations in

recording precise gauge observations, yet the challenge pre-

sented to applications and systems that ingest multiple gauge

networks is the lack of available metadata to properly adjust

these observations. Gauge networks ingested by MRMS were

not accompanied with the metadata needed to effectively

modify the gauge value to account for wind undercatch or any

other observational limitations of gauges. Not having such

gauge instrumentation characteristics freely available coupled

with any potential blanket methodology to correct for gauge

limitations (e.g., wind undercatch, wetting loss, evaporation,

tipping limitations, etc.) would likely produce inaccurate ad-

justments to the gauge observation, especially for solid winter

precipitation where greater variations in adjustment factors

based on instrumentation exist.

The authors believe that continued studies on the limitations

of and the ability to adjust gauge observations coupled with

accessibility to complete and accurate gauge metadata would

improve the ability to create QPEs needed for various hydro-

meteorological applications. Efforts should be made to better

document and make available the exact characteristics of

gauge instrumentation at each site. Having the knowledge of

such characteristics as the gauge type and its measurement

limitations, gauge height, orifice diameter, and the shielding

and heating element configurations across all networks inges-

ted by large gauge collection platforms would further increase

FIG. 22. Illustration of the various adjustment equations for wind undercatch from previous studies. The equa-

tions are color coded based on those related to rainfall (orange) vs solid winter precipitation (blue) as well as studies

that utilized gauges that were shielded (dark shading) and unshielded (light shading).

TABLE 11. Adjustment equations for wind undercatch from recent studies. Listed are the precipitation type studied, the gauge type, if a

windshield was present, the adjustment equation, and the accumulation period.

Study

Precipitation

type Gauge type Shield Adjustment ratio equation Accumulation

Allerup and Madsen (1980) Rain Hellman 8 in. No exp{[20.0010 3 ln(R)] 2 [0.0082 3 u

3 ln(R)] 1 (0.0420 3 u) 1 0.0100}

Instantaneous

Førland et al. (1996) Rain Hellman 8 in. Yes exp{[20.001 01 3 ln(R)] 2 [0.012 177

3 u 3 ln(R)] 1 (0.034 331 3 u)

1 0.007 697 2 0.05}

Instantaneous

Førland and Hanssen-

Bauer (2000)

Rain Hellman 8 in. No exp{[20.001 01 3 ln(R)] 2 [0.012 177

3 u 3 ln(R)] 1 (0.034 331 3 u)

1 0.007 697}

Instantaneous

Yang et al. (1998) Rain NWS 8 in. No exp[4.605 2 (0.062 3 u0.58)] Daily

Yang et al. (1998) Rain NWS 8 in. Yes exp[4.606 2 (0.041 3 u0.69)] Daily

Førland et al. (1996) Snow Geonor 8 in. Yes exp[20.121 59 1 (0.185 46 3 u)

1 (0.006 9183T)2 (0.005 2543T3u)]

Hourly

Goodison et al. (1998) Snow Nipher Yes 100.00 2 (0.44 3 u2) 2 (1.98 3 u) Daily

Yang et al. (1998) Snow NWS 8 in. Yes exp[4.606 2 (0.036 3 u1.75)] Daily

Goodison et al. (1998) Snow Hellman 8 in. No 100.00 1 (1.13 3 u2) 2 (19.45 3 u) Daily

Yang et al. (1998) Snow NWS 8 in. No exp[4.606 2 (0.157 3 u1.28)] Daily
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the ability to tailor any adjustment factors to each gauge con-

figuration. Only then could the hydrometeorological commu-

nity gain a greater understanding of how much precipitation is

occurring during any given event.
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